Denervation of the motor endplate results in the rapid expression by terminal Schwann cells of the growth-associated protein GAP-43.

نویسندگان

  • C J Woolf
  • M L Reynolds
  • M S Chong
  • P Emson
  • N Irwin
  • L I Benowitz
چکیده

Developing and regenerating neurons express high levels of the growth-associated phosphoprotein GAP-43. This membrane protein is not confined to neurons, however, as a number of studies have demonstrated GAP-43 immunoreactivity in central and peripheral glia in vitro and in vivo. We have found that the Schwann cells overlying the terminal motor axon at adult rat skeletal muscle endplates, and the motor axons themselves, are normally not GAP-43 immunoreactive. Within 24 hr of denervation, however, the terminal Schwann cells are positive for a GAP-43 mRNA in situ hybridization signal and are GAP-43 immunoreactive. The immunoreactive GAP-43 cells possess elaborate processes that branch from the endplate region into the perisynaptic zone and stain with defined Schwann cell markers: the calcium binding protein S100 and the low-affinity NGF receptor (NGFr), but not with a fibroblast marker, Thy-1. Reinnervating motor axons are GAP-43 positive, with an appearance quite different from the GAP-43-positive Schwann cells. The reappearance of nerve endings at the motor endplate is followed by the disappearance of GAP-43 labeling in the Schwann cells and of a retraction of their processes. GAP-43 expression in Schwann cells is therefore state dependent, apparently regulated by neural contact. This protein, which is associated in neurons with neurite formation, may participate in the elaboration of processes by Schwann cells when their contact with axons is disrupted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GAP-43 is expressed by nonmyelin-forming Schwann cells of the peripheral nervous system

Recently it has been demonstrated that the growth-associated protein GAP-43 is not confined to neurons but is also expressed by certain central nervous system glial cells in tissue culture and in vivo. This study has extended these observations to the major class of glial cells in the peripheral nervous system, Schwann cells. Using immunohistochemical techniques, we show that GAP-43 immunoreact...

متن کامل

Comparison of the effects of progesterone and 17 β-estradiol on Schwann cell markers expression in rat adipose-derived stem cells

Steroids promote the myelination and regeneration in the peripheral nervous system. Whereas, little is known about the inducing effects by which the hormones exert their effects on Schwann cells differentiation. This could be revealed by the expression of Schwann cell markers in adipose-derived stem cells (ADSCs). The purpose of this study was to present the effects of progesterone and 17 β-est...

متن کامل

Apoptosis of Rat Adipose-Derived Stem Cells during Transdifferentiation to Schwann-Like Cell

Background: Adipose-derived stem cells (ADSCs) are a population of pluripotent cells used for tissue engineering purposes. The main purpose of the present study was to transdifferentiate the ADSCs to Schwann-like cells and to determine the intensity of apoptosis in ADSCs during the transdifferentiation process. Methods: ADSCs were isolated from the inguinal adipose tissue of adult rats and the ...

متن کامل

The Scaffolding Protein, Grb2-associated Binder-1, in Skeletal Muscles and Terminal Schwann Cells Regulates Postnatal Neuromuscular Synapse Maturation

The vertebrate neuromuscular junction (NMJ) is considered as a "tripartite synapse" consisting of a motor axon terminal, a muscle endplate, and terminal Schwann cells that envelope the motor axon terminal. The neuregulin 1 (NRG1)-ErbB2 signaling pathway plays an important role in the development of the NMJ. We previously showed that Grb2-associated binder 1 (Gab1), a scaffolding mediator of rec...

متن کامل

Structural plasticity of climbing fibers and the growth-associated protein GAP-43

Structural plasticity occurs physiologically or after brain damage to adapt or re-establish proper synaptic connections. This capacity depends on several intrinsic and extrinsic determinants that differ between neuron types. We reviewed the significant endogenous regenerative potential of the neurons of the inferior olive (IO) in the adult rodent brain and the structural remodeling of the termi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 12 10  شماره 

صفحات  -

تاریخ انتشار 1992